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The concern of this paper is the large amplitude free vibration of strongly non-linear
oscillators ü+mu+ o1u2ü+ o2uu̇2 + o2u3 =0, where m=1, 0, or −1, o1 and o2 are
positive parameters which may be arbitrarily large, and u(t) may be of order unity.
Approximate analytical solutions for the period of free motion are obtained, for
comparison purposes, by using the single-term harmonic balance (SHB) method, the
two-terms harmonic balance (2THB) method, and the two-term time transformation
(2TT) method described in reference [1]. Parametric studies on the effects of m, o1 and
o2 on the period-amplitude behaviour are presented as obtained by using the above three
analytical methods. The results of these three methods are compared with each other
and with those obtained numerically. For convenience, the results are displayed
graphically. It is shown that for the case m=1, a qualitative failure of the SHB method
ocurs when o1 and o2 are in the range 1·5Q o1/o2 Q 1·8. It is also shown that for m=0,
or −1, the period–amplitude behavior is of hardening type regardless of the value of
o1 relative to o2. In all cases m=1, 0, or −1, the period becomes nearly constant
independent of motion amplitude when this amplitude is relatively large. It is also
shown that the period becomes a constant independent of motion amplitude and is
equal to the linear period when o1 0 1·6o2. 7 1997 Academic Press Limited

1. INTRODUCTION

This work is concerned with the free vibrations of autonomous conservative oscillators
with inertia and static type cubic non-linearities governed by a dimensionless equation of
motion of the form

ü+mu+ o1u2ü+ o1uu̇2 + o2u3 =0, (1)

where dots denote time derivatives, m is an integer which may take on the values m=1, 0
or −1 in order to allow results to be obtained for which the associated linear oscillator
is, respectively, statically stable, neutrally stable or statically unstable, o1 and o2 are
positive parameters which may not be small, and the displacement u(t) is of order unity.
In equation (1), the first of the non-linear terms is a softening inertia type, the second
non-linear term is a hardening inertia type, while that last non-linear term is a hardening
static type. For o2 Q 0 the last non-linear term in equation (1) becomes a softening static
type, and such a case will not be considered in this work. When o1 =0, equation (1) reduces
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to the usual Duffing oscillator

ü+mu+ o2u3 =0. (2)

Phenomena governed by an equation similar to equation (2) have been the subject of many
investigations over the years see, e.g., references [2–11], in which numerical and various
well established approximate analytical methods have been used by various authors to
obtain the period of free oscillations for both the weakly non-linear (o2 W 1) and the
strongly non-linear (o2 q 1) cases. On the other hand, studies dealing with oscillators of
the type modelled by equation (1) are less abundant.

The oscillators in equation (1) and those in equation (2) have the same potential energy
V(u), defined as V(u)=0·5mu2 +0·25o2u4. For the cases m=0 and m=1, V(0)=0 and
V(u)q 0 for all u$ 0. Thus the origin of the phase space (u(0)=0, u̇=0) is a
stable equilibrium point, and periodic motions centered at the origin will occur for all
non-zero initial conditions; i.e., u(0)$ 0 and/or u̇$ 0. For simplicity, and without loss of
generality, the initial conditions in this work will be taken as u(0)=A, u̇(0)=0, where A
is the oscillation amplitude. For an oscillator with only hardening static cubic non-linearity,
such as the one given by equation (2) with o2 q 0, for which the associated linear oscillator
is statically stable (m=1) or neutrally stable (m=0), the period of free oscillation
decreases monotonically as the motion amplitude A is increased and approaches zero as
A approaches infinity. For an oscillator with only softening static cubic non-linearity, i.e.,
equation (2) with o2 Q 0, and which is linearly stable (m=1), periodic motions about
the origin are possible only over a limited range of amplitude A (with u̇=0), where
=A =E 1/z−o2. In this case the period of motion increases monotonically with increasing
amplitude A, but becomes infinite as =A =:1/z−o2, at which point beyond the oscillator
becomes statically unstable and periodic motions cease to exist. For a linearly
stable (m=1) oscillator with inertia softening and hardening non-linearities and static
hardening non-linearity, i.e., equation (1) with o1 q 0 and o2 q 0, the period of oscillation
variation with amplitude of motion may exhibit a softening or hardening behavior
depending, respectively, on whether the non-linear inertia is stronger than (o1�o2) the static
hardening non-linearity. Hamdan and Shabaneh [12] have recently indicated that in either
of these two cases the period of free motion of a system with inertia and hardening static
non-linearities is amplitude dependent only for small moderate values of motion amplitude
A and eventually becomes independent of amplitude A as A becomes relatively large. It is
shown in this work that for the cases m=0 and m=−1 the period–amplitude behavior
of the oscillators in equation (1) is of hardening type regardless of the relative strength of
the inertia non-linearity with respect to the static hardening non-linearity, and that the
period of these oscillators is independent of amplitude A at moderate and large values of
A. It is also shown that, for the case m=1, the period of the oscillator in equation (1)
becomes a constant, independent of A, and equals the linear period whenever o1 0 1·6o2.

A physical example of a system described by equation (1) is the large amplitude planar
flexural free vibrations of an inextensible slender cantilever beam element with or without
intermediate inertia element [12–14]. In this case equation (1) represents the scaled,
single-mode, equivalent temporal problem in which the parameters o1 and o2 are defined
by integrals involving products of an assumed mode shape deflection and its derivatives.
It is known that the large amplitude fundamental mode response of such a beam is
dominated by the static non-linearity, arising from potential energy stored in bending,
where o2 q o1. At the higher modes the response becomes dominated by the non-linear
inertia softening effects, arising from the kinetic energy of axial motion, where o1 becomes
much larger than o2 and increases, while o2 decreases, as the mode number is increased.
Examples of calculated values of o1 and o2 for such a cantilever beam system show that,
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depending on the scaling procedure, o2 0 1, o1 0 0·1 for the fundamental mode while the
fourth mode, for example, o2 0 0·1, o1 0 10 or higher, depending on the scaling procedure,
and the magnitude and location of the attached inertia element, if any [12–14]. In other
words, o1 and o2 in equation (1) are not in this case small compared to 1, as is usually
assumed in perturbation theory. Furthermore, such a beam system, being flexible, when
subjected to a direct and/or parametric (i.e., base) excitation usually undergoes large
amplitude stable resonance motions where peak amplitudes of the order of one quarter
of the beam length may be anticipated [13–15] and thus the non-linear terms, taking into
account the fact that o1 and/or o2 are not small compared to 1, become an order of
magnitude comparable to or even greater than that of the linear ones. It is of great interest
in such cases, and in forced vibration analysis of non-linear systems in general, to
determine the free vibration frequency-amplitude dependence, as this defines the so-called
‘‘backbone’’ curve of the resonance response, which allows one to establish the qualitative
behavior of the resonance response.

Available analytical techniques for the analysis of non-linear conservative oscillators
such as the ones modelled by equation (1) or (2) can only provide approximate solutions
to the actual response of non-linear oscillators. Classical analytical methods which have
been widely used for the linearly stable, weakly non-linear oscillators (i.e., m=1, o1�1
and o2�1) include perturbation methods, such as the Linstedt–Poincaré (L–P) and multiple
time scales (MMS) methods, and the generalized averaging method of Krylov–Bogoli-
ubov–Mitropolski (KBM). These methods are described, for example, by Nayfeh [7],
Nayfeh and Mook [9] and Minorsky [4]. In the perturbation methods one seeks
asymptotically valid, usually low order approximations to the response by expanding the
dependent variable and system parameters in a small positive gauge parameter to convert
the non-linear differential equation to an ‘‘equivalent’’ system of linear differential
equations. In the MMS a number of time scales are used and the resulting equivalent linear
system is a set of linear partial differential equations, while in the L–P method a single
time scale is used and the equivalent system is a set of linear ordinary differential equations
in the defined (transformed) time scale. The KBM method also uses a number of time
scales and power series expansion of the dependent variable and system parameters. In
principle, the equivalent system of linear differential equations can be solved, in sequence,
to any desired order of approximation; however, in practice, the solutions to these
equations are usually limited to the first or second order approximations as the algebraic
manipulations, although straightforward, become increasingly laborious as the order of
approximation is increased. Furthermore, the assumed series expansions are neither unique
nor convergent, and thus carrying the calculations to second or higher order may not
always improve the solution; i.e., second or higher order solutions do not always represent,
as they should do, small corrections to the lower order solutions and thus violate the
ordering requirement of the perturbation method [16–19]. Furthermore, the small positive
gauge parameter used in the assumed power series expansions is usually naturally present
in the equation of motion; otherwise, this parameter is intentionally introduced by
‘‘arbitrarily’’ scaling the equation of motion and/or re-ordering the appropriate terms in
the equation of motion based on the relative importance of these terms in the anticipated
response [9–14]. Thus, the range of system parameters and amplitudes over which the
predicted perturbation solution is satisfactory is fixed in advance by the ordering and
scaling schemes; however, this range is usually left unspecified. Furthermore, the
amplitudes of different harmonics of the predicted approximate periodic response are
assumed to satisfy the ordering scheme which determines in advance the relative
importance of each of these harmonics and assumes the rapid attenuation of the higher
ones for the assumed weakly non-linear system.
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Classical methods which have been used for both the weakly and strongly non-linear
oscillators for which the associated linear oscillator may or may not be statically
stable (i.e., m may be 1, 0, or −1) include the harmonic balance (HB) [8], equivalent
linearization [5] and describing functions methods [6]. In these methods, the periodic
solution to the non-linear problem is specified in advance, and usually these methods work
well provided that the filter hypothesis is satisfied; that is, higher harmonics output by the
non-linearities remain small compared to the assumed lower ones. In these methods, the
arbitrary re-ordering of various terms in the non-linear differential equation of motion,
employed in the perturbation methods, is not necessary. In the HB method, the more
commonly used of these methods, a periodic solution of the dependent variable is assumed
in the form of a Fourier series, mostly truncated to only a few leading harmonics which
are assumed to be dominant and of equal level of importance over the full range of system
parameters and motion amplitude. Upon substituting the asusmed series solution in the
equation of motion, and equating the coefficients of different harmonics to zero, one
obtains a set of coupled non-linear algebraic equations in the coefficients of the assumed
harmonics and frequency of motion. These coupled non-linear equations, along with an
equation (when a cosine or sine series with no phase shift is used), obtained by imposing
the initial conditions, are then solved simultaneously for a given motion amplitude to
obtain an approximation to the non-linear response. The number of these coupled
non-linear equations which need to be solved simultaneously is equal to the number of
harmonics in the assumed series solution. Therefore, the use of a sufficiently large number
of harmonics to improve accuracy results in a messy non-linear algebraic problem.
Furthermore, one intuitively expects the assumed HB solution to converge to the actual
solution as the number of harmonics in the assumed solution is increased. However, this
is generally true provided that the harmonics in the assumed truncated series solution are
the dominant ones and the neglected harmonics are small compared to the retained ones
[20]. Furthermore, since the retained harmonics, as indicated above, enjoy an equal level
of importance and are allowed to interact with each other in a non-linear way, the problem
of selecting the ‘‘right’’ combination of these leading harmonics, which will lead to the
correct qualitative, and hopefully quantitative behavior of the response, becomes a difficult
task especially when the non-linearities are strong [20]. In fact, there are many examples
in the literature in which an HB solution in which only a few leading harmonics are used
can fail not only quantitatively but also qualitatively [20]. Therefore, confidence in the
accuracy of the HB solution cannot always be established without comparing it with the
results of numerical and other approximate analytical methods [20].

Refinements of existing approximate analytical techniques, as well as new methods with
various restrictions placed on the type and strength of the non-linearities, have also
appeared over the years [1, 21–27]. Surveys of such methods are presented, i.e., in
references [1, 21], and are briefly summarized in what follows. For example, Sinha and
Srinivasan [22], Anderson [23] and others, have used various sets of orthogonal polynomial
expansions of non-linear terms, often in conjunction with the K–B averaging method.
Helleman and Montroll [24] and Eminhizer, Hellman and Montroll [25] presented a
perturbation procedure free of secular terms. Einuada [26] presented a perturbation
procedure free of secular terms. Einuada [26] presented a successive approximation method
which also does not involve secular terms. Jones [27] presented a perturbation procedure
which involves the formulation of a new small expansion parameter, in terms of the
original small parameter, and a linear transformation of time. His technique was shown
[27] to yield a fairly accurate approximation to the period of the strongly non-linear
Duffing oscillator. Burton [21] has also used the definition of a new small parameter, based
on the results of series expansion for the period presented in reference [1] which are
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discussed subsequently, and a linear transformation of time to extende the L–P
perturbation method to the analysis of strongly non-linear Duffing oscillators. His
method, like that in reference [1], is also applicable to the cases in which the associated
linear oscillator of the strongly non-linear oscillator is neutrally stable (m=0), or
statically unstable (m=−1), which cannot be analyzed using standard perturbation
theory. Burton and Hamdan [1] presented a time transformation (TT) method for the
analysis of a generalized version of the non-linear conservative autonomous oscillators
in equation (2). Their method, which does not involve perturbation, places no restriction
on the strength of the non-linearity. It has the advantage over other approximate
analytical methods of yielding an exact series expansion for the period of the non-linear
oscillator in terms of the Fourier coefficients of the non-linearity, from which the period
may be calculated to the desired accuracy with comparatively less computational effort.
It also has the advantage of being applicable to situations in which other methods may
fail: i.e., when the non-linearity is strong and when the associated linear oscillator is
neutrally stable (m=0) or statically unstable (m=−1). The procedural steps of this
TT method are described in detail in reference [1] and are summarized in section 2.3.
In this work, because of the strength of the non-linearities considered, the TT procedure
[1] will be used to obtain an approximation of the period of the non-linear oscillator
modelled by equation (1) for the case in which o1 and/or o2 are not small and the
displacement u(t) is of order unity. It is to be noted that the TT method in reference
[1] has been applied for the cases in which the non-linear oscillator has only static
non-linearity; therefore, the present work attempts to extend this method to the cases
in which the non-linear oscillator has static and inertia non-linearities. For comparison
purposes, the TT results will be compared with those obtained by using the HB method
as well as with those obtained by numerical integration. The emphasis of the present
work is on the effect of large amplitude motion on the quantitative as well as qualitative
behavior of the non-linear period of free motion and on the effect of the relative
strength of the inertia and the hardening static non-linearities on this behavior. It is also
of interest to know the extent to which variations in the system parameters o1 and o2

can have a significant effect on the quantitative and qualitative behavior of the period
with motion amplitude. For example, as indicated above, in the case of the free
vibration of an inextensible cantilever beam the values of o1 and o2 depend on the
arbitrarily selected mode shape; thus one is usually interested to know the effect of
different selected mode shape on the accuracy of the obtained results. For convenience,
the period–amplitude relations for various selected values of o1 and o2 are presented in
graphical form. The analytical solutions obtained by using single-term HB, two-term HB
and two–term TT methods are presented in this section. The results obtained using these
approximate analytical solutions as well as the results of numerical integration are
presented and discussed in this section. As indicated above, most of the published
studies on the free vibration of conservative autonomous oscillators are concerned with
oscillators having only hardening or softening static non-linearities and, to the authors
knowledge, despite its practical importance, studies dealing with the free vibration of
oscillators having inertia and hardening static non-linearities of the type modelled by
equation (1) are not commonly available.

2. ANALYSIS

In this section, approximate analytical solutions of the conservative autonomous
non-linear oscillator in equation (1) are obtained by using the single-term HB method, the
two-term HB method and the TT method described in reference [1]. Without loss of
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generality, the initial conditions are taken to be u(0)=A, u̇(0)=0, where A is the
amplitude of motion.

2.1. -   () 

According to the SHB method, an approximate solution of equation (1), with u(0)=A,
ü(0)=0, takes the form

u(t)=A cos vt, (3)

where A is the amplitude and v is the frequency of motion. Substituting equation (3) and
its time derivatives into equation (1), using the trigonometric identity
cos3 vt= 1

4(3 cos vt+cos 3vt), and collecting the cos vt and cos 3vt terms, leads to

$m+ 3
4o2A2 −v201+

o1

2
A21% cos vt+0o2

4
A2 −

o1

2
A2v21 cos 3vt=0. (4)

Ignoring the effect of the third harmonic cos 3vt, and equating the coefficient of cos vt
to zero, one obtains the non-linear frequency–amplitude relation

v2 =0m+ 3
4 o2A2101+

o1

2
A21

−1

. (5)

The period t of the motion is obtained by substituting t=2p/v into equation (5), which
yields the period–amplitude relation

t=2p01+
o1

2
A21

1/2

0m+ 3
4 o2A21

−1/2

. (6)

The period–amplitude relation in equation (6) represents the first order approximation
which one also obtains when using classical perturbation methods. It can be seen from
this equation that for the cases in which o1 and o2 are not small compared to 1, the period
t for the case m=1 becomes nearly constant independent of amplitude A: i.e.,
t:2p(1·5o2/o1)−1/2, as the amplitude A becomes of order unity. The results obtained by
using equation (6) for various selected values of o1 and o2 are presented and discussed, for
convenience, in section 3.

2.2. -   (2) 

Improvement of the accuracy of the SHB solution is sought by adding more harmonics
in the assumed HB solution. When the number of different harmonics in the assumed
solution is equal to two, the HB method is called the two-term harmonic balance (2THB)
method. According to this method, with u(0)=A, and u̇(0)=0, an approximate solution
of equation (1) takes the form

u(t)=A1 cos vt+A3 cos 3vt. (7)

Application of the initial condition u(0)=A, yields

A=A1 +A3. (8)

Equation (8) relates the total amplitude A of motion to the ampliudes A1 and A3 of the
fundamental and third harmonics of the response, respectively. Substituting equation (7)
and its time derivatives into equation (1), using trigonometric identities, retaining only the
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cos vt and cos 3vt terms and then equating the coefficient of each of these two harmonics
to zero, one obtains the following non-linear coupled algebraic equations:

A3 =
0·25o1(A3

1 +3A3
3 )−0·5o1v

2(A3
1 +9A3

3 )
9v2 −m−1·5o2A2

1 +5o1v
2A2

1
(9)

v2 =
m+ o2[0·75A2

1 +0·75A1A3 +1·5A2
3]

1+ o1[0·5A2
1+1·5A1A3 +5A2

3 ]
(10)

Equations (9) and (10), along with equation (8), define the amplitudes A1 and A3 of the
fundamental and third harmonics, respectively, and the frequency v of the assumed
periodic motion. For a given amplitude A, these non-linear coupled equations are solved
numerically by a direct iteration technique with 10−6 accuracy. The period t of the motion
is then calculated by using the relation

t=2p/v. (11)

The period t calculated by using equations (8)–(11) is presented and discussed, for
convenience, in the next section.

2.3.    () 

An approximate analytic solution for the period t of the non-linear autonomous
conservative oscillator in equation (1) can also be obtained, for comparison purpose by
using the time transformation (TT) procedure described in detail in reference [1]. This
method, like the HB method, places no restriction on the strength of the non-linearities
and is applicable in each of the three cases m=1, 0 or−1. However, it differs from the
HB and the other approximate analytical methods in that it yields a series expansion for
the period of t of a non-linear autonomous conservative oscillator, in terms of the Fourier
coefficients of the non-linearity, from which the period t can be calculated to the desired
degree of accuracy with relatively less computational effort [1]. The TT series solution in
reference [1], however, is given only for an oscillator with general static non-linearity; a
TT solution for a conservative oscillator of the type given by equation (1) which has both
static and intertia non-linearities is carrried out in what follows.

According to the TT method [1], a simple valued transformation of time T(t) is sought
between the real time t and a new time T such that in the new time T domain the solution
of equation (1) is simple harmonic with period t=2p: i.e., with u̇(0)=0, u(T) takes the
form u(T)=A cos T, where T(0)=0 and A is, as before, the motion amplitude. Writing
equation (1) with T as the independent variable and substituting for u(t)=cos T(t) in the
result, one obtains, after dividing by A,

(m− f 2) cos T− ff ' sin T−2o1A2f 2 cos 3T− o1A2ff ' cos2 T sin T+ o1A2 cos T

+ o2A2 cos 3T=0 (12)

where primes denotes differentiation with respect to T and f=dT/dt. Using the
trigonometric identities sin2T=1−cos2 T and cos3 T= 1

4(3 cos T+cos 3T) equation (12)
becomes

[m+0·75o2A2 − f 2(1+ o1A2/2)] cos T− ff '(1+ o1A2/4) sin T

+(0·25o2A2 − o1A2f 2/2) cos 3T−0·25o1A2ff ' sin 3T=0 (13)

Equation (13) is an inhomogeneous first order linear differential equation in f(T). For u(T)
to be a simple harmonic in time T, the time transformation f(T) must satisfy this equation.
Since the harmonics in this equation are odd, f(T), and thus f 2(T), will be periodic and
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of period p in T. Therefore, a periodic solution of period p may be obtained by substituting
the assumed Fourier series [1]

f 2 = s
a

n=0,2

Gn cos nT, (14)

with coefficients Gn to be determined, into equation (13) and equating the coefficients of
the harmonics sin nt and cos nT to zero. This leads to the following collection of linear
algebraic equations in the coefficients Gn:

(1+ o1A2/2)G0 + (0·25o1A2)G2 =m+0·75o2A2,

(o1A2/2)G0 + (1+3o1A2/8)G2 = (1/2)G4 + (o1A2/8)G6 + o2A2/4

$0n+2
16 1 o1A2%Gn+6 +$n+4

4
+

n+6
16

o1A2%Gn+4

=0n+4
16

o1A21Gn +0n+4
4

+
n+6

16
o1A21Gn+2. ne 2. (15)

Note that, for the case o1 =0, o2 $ 0, i.e., for an oscillator with static cubic non-linearity,
it can be easily deduced from equations (15) that Gn =0 for ne 4, so that only the first
two of these equations need to be solved which in this case yield the exact G0 and G2.
However, for the present case with o1 and o2 both non-zero, the Gn for ne 4 are not zero,
and thus finding closed form solutions for all of the Gn becomes a difficult task unless one
truncates the series in equation (14), and thus reduces the number of equations in the set
of equations (15) needed to be solved, to an arbitrary finite number n. Therefore, in the
present work, for the sake of simplicity, approximate closed form solutions for the Gn in
equation (15) are sought by assuming that Gn =0 for nq 2. Consequently, with Gn =0
for nq 2, only the first three of the linear algebraic equations (15) do not vanish, which
are then solved to yield.

G0 = (R1b2 − a2R2)/D, G2 = (a1R2 −R1b1)/D,

G4 =−(3o1A2/8)/(1·5+ o1A2/2), D= a1b2 − a2b1, (16)

where

a1 =1+ o1A2/2, a2 = o1A2/4, R1 =m+0·75o2A2

b1 = o1A2/2, b2 =1+ 3
8o1A2 + (3o1A2)/(24+8o1A2), R2 = o2/4. (17)

Next, upon taking the square root of equation (14), factoring out G0, using the relation
f=dT/dt, integrating the result from 0 to 2p in T and noting that the period t in time
T is 2p, one obtains

t=2p(G0)−1/2g
2p

0

[1+H2 cos 2T+H4 cos 4T]−1/2 dT, (18)

where

H2 =G2/G0, H4 =G4/G0. (19)
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Expanding the bracketed term on the right side of equation (18) into a power series, by
noting that H2 +H4 is, in general, less than unity, and retaining terms only in H2, one
obtains [1]

t=2p(G0)−1/2[1+ 3
15H

2
2 +

105
1024

H4
2 + · · · ]. (20)

The period t of the non-linear oscillator in equation (1) obtained by using equation (20)
for various selected values of o1, o2 and m are presented and discussed in the next section.
Because only the first two harmonics of the Fourier series expansion of the time
transformation in equation (14) were used to arrive at equation (20), the results obtained
by using this equation will be referred to as 2TT results.

Note that by setting Gn =0 for ne 2, equations (16) yield G0 = (m+0·75o2A2)/
(1+ o1A2) and the period t from equation (20) becomes

t=2p(m+0·75o2A2)−1/2(1+ o1A2/2)1/2,

which is the same result in equation (6), obtained by the SHB method. Furthermore, in
order to include the effect of higher harmonics on the period t, one needs when using the
HB method to solve a set of non-linear algebraic equations, whereas when using the TT
method the effect of the higher harmonics can be examined, with comparatively less
computational effort, by solving for additional Gn from a set of linear algebraic equations.

3. RESULTS AND DISCUSSION

The period t of free vibration of the autonomous non-linear conservative oscillator
modelled by equation (1) was calculated, for given values of the parameters o1, o2 and m
and motion amplitude A, analytically by using the SHB, equation (6), the 2THB, equations
(8)–(11), and the 2TT, equations (16), (17), (19) and (20), and numerically by using the

Figure 1. The variation of period t with amplitude A for m=1. o1, o2 values: (a) 10, 1·0; (b) 5, 1·0; (c) 1·0,
0·1; (d) 0·5, 0·1 —, Numerical; — —, SHB; ---, 2THB; ······, 2TT.
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Figure 2. As Figure 1, but with the following o1, o2 values: (a) 1·0, 10; (b)1.0, 5.0; (c)0·1, 1·0; (d) 0·1, 0·5.

fourth order Runge–Kutta method with a 10−3 integration step size. The concern of this
work is on the strongly non-linear cases; therefore, the period t was calculated for cases
in which o1 and/or o2 are not small compared to unity and the amplitude A of motion is
of order unity. Examples of the results of these calculations for various selected cases of
m, o1 and o2 are displayed in Figures 1–5.

Figure 3. As Figure 1, but with the following o1, o2 values: (a) 0·1, 0·6; (b) 0·5, 0·3; (c) 2·0, 1·2; (d) 1·0, 0·7.
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Figure 4. The variation of period I with amplitude A given by using the 2TT method, for m=1·0. (a) o2 =1·0;
(b) o2 =0·5; (c) o2 =2·0; (d)o1 =1·0. (a) o1 values:, -----, 1·0; · · · · · , 1·2; ·-·-, 1·5; ·—··, 1·65; —, 2·0, (b) o1 values:
----, 0· 5; · · · · · , 0·6; –-–, 0·85; —··—, 1·0; — 2·0. (c) o1 values: -----, 2·0; · · ·· · , 2·5; –·–, 3·35; —··—, 4·0; —,
5·0. (d) o2 values: · · · · ·, 0·5; ....., 0·6; —·—, 1·0; – - - – - - – - - , 2·0; —, 4·0.

In Figures 1 and 2, the period–amplitude (t–A) variations for the statically
stable (m=1) oscillator obtained analytically by using the SHB, 2THB and 2TT methods
are compared to those obtained numerically for the cases in which o1 is relatively large or
small with respect to o2. The results in these figures indicate that when o1 is relatively large
or small with respect to o2 then: (1) the accuracy of the SHB solution is good for small,
and fair for relatively moderate values of the amplitude AQ 1, but becomes poor, and
eventually deteriorates, when A approaches, and becomes greater than 1; (2) the accuracy
of the 2TT solutions is fairly good for moderate values of A, and becomes poor, but is
appreciably better than that of the SHB solution, for relatively large A; (3) the accuracy
of the 2TT solution at moderate and large values of A is better than that of the 2THB
solution; (4) the accuracy of the three solutions, SHB, 2THB and 2TT, for moderate and
large A is better when o2�o1 than when o1�o2; (5) all of the three analytic SHB, 2THB
and 2TT solutions predict the correct qualitative t–A behavior when o1�o2 or o1�o2; (6)
the three analytic, SHB, 2THB, 2TT and numerical solutions show that the period of the
oscillator in equation (1) for the above cases, i.e., m=1 with o1�o2 or o1�o2, becomes
constant nearly independent of amplitude A as A becomes relatively large.

As shown in Figure 3 examples of the qualitative failure of the SHB method for the case
m=1. These figures, and others not shown, indicate that when the inertia and static
non-linearities of the statically stable (m=1) oscillator are nearly of the same strength,
the SHB method may fail to predict the correct qualitative behavior of the t–A variation.
For example, from Figure 3(a), it can be seen that, for m=1, o1 =1, o2 =0·6, the SHB
solution predicts a softening t–A behavior, while the 2THB and 2TT as well as the
numerical solutions predict that the t–A behavior for this oscillator is of the hardening
type. The results in Figure 3, as well as others not shown, indicate that when the ratio
o1/o2, with m=1, is, roughly, in the range 1·5Q o1/o2 Q 1·8, the SHB solution fails
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qualitatively, as it incorrectly predicts softening behavior of the t–A variation for the
oscillator in equation (1). It is to be noted that the 2THB and 2TT solutions can also fail
and yield qualitatively wrong period–amplitude behavior for the above oscillator; however,
this failure occurs over a smaller subrange of the above range in the SHB method. The
results in Figure 3, like those in Figures 1, 2, also indicate that the period of the non-linear
oscillator, for both the hardening and softening cases, becomes nearly constant,
independent of motion amplitude A at relatively large values of A.

In Figure 4 are shown examples of the effects of variations in the relative strength of
inertia non-linearity with respect to the hardening non-linearity, i.e., effects of variation
in o1 with respect to o2, for the case m=1 on the t–A variations obtained by using the
2TT result. These results, as well as those in Figures 1(a)–3(d) and others not shown,
indicate the following: (1) a small variation in the value of o1 and/or o2 can lead to relatively
large variations, both quantitative and qualitative, in the calculated value of the period
t, especially at moderate and large values of A; (2) the t–A variation exhibits a softening
behavior when, roughly, o1/o2 q 1·6, and a hardening behavior when o1o2 Q 1·6; (3) when
o1 0 1·6o2 the period of the non-linear oscillator in equation (1), with m=1, becomes
nearly constant, equal to the linear period 2p, independent of motion amplitude A for all
values of A. Note that the SHB solution in equation (6) predicts that, by setting the right
side of this equation equal to 2p, the period of the non-linear oscillator in equation (1)
becomes a constant independent of motion amplitude A whenever o1/o2 is equal to 1·5.

Figure 5. The variation of period t with amplitude A obtained by using 2TT method. (a) m=0; (b) m=−1·0.
o1, o2 values: ——, 1·0, 1·0; —–—–, 10, 1·0; – – – –, 20, 1·0; -----1·0, 0·5; · · · · · , 10, 0·5.
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In Figure 5 are shown examples of t–A variations for the cases in which the associated
linear oscillator in equation (1) is neutrally stable (m=0), or statically unstable (m=−1),
respectively. These results, and others not shown, indicate that the period t of these
oscillators exhibits a hardening behavior with amplitude A variations regardless of the
relative strength of the inertia non-linearity with respect to the static hardening
non-linearity: i.e., regardless of the value of o1 with respect to o2 with o1 q 0, and o2 q 0.
These results also indicate that the period t of these types of oscillators becomes nearly
constant independent of amplitude A at relatively smaller values of A than those of the
case m=1 where the associated linear oscillator is statically stable.

4. CONCLUSIONS

On the basis of the results presented in this work, one may conclude that when equation
(1) is used to model physical systems, such as the assumed single-mode planar large
amplitude free vibration of an inextensible cantilever beam element which may or may not
carry an intermediate inertia element, as indicated in section (1), one should be careful not
only in choosing the appropriate solution method but also in evaluating the system
parameters o1 and o2: i.e., in selecting the appropriate mode shape deflection. For example,
the results of the present study show that a small variation in the value of o1 and/or o2 along
with approximate first order solution, such as the SHB solution, can lead to appreciable,
not only quantitative, but also qualitative errors in the predicted response. Therefore, in
order to avoid errors, one should compare the approximate analytic solution of the method
used with those of other approximate analytical methods and with numerical ones. The
present results also indicate that when the strength of the inertia non-linearities is about
1·6 that of static hardening non-linearity; i.e., o10o2, the period of the cubically non-linear
oscillator in equation (1) for which the associated linear oscillator is statically
stable (m=1) becomes nearly constant, equal to the linear period, independent of
amplitude of motion A for all values of A. This implies that the resonance response in
this case resembles that of the linear oscillator, and thus one expects in this case the
resonance response of the non-linear oscillator not to exhibit forms of behaviors such as
chaos and amplitude jumps.
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